Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China

نویسندگان

  • Tongxin Hu
  • Long Sun
  • Haiqing Hu
  • Futao Guo
چکیده

In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze-thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Long-Term Thinning on the Biomass Carbon and Soil Respiration in a Larch (Larix gmelinii) Forest in Northeastern China

Thinning management is used to improve timber production, but only a few data are available on how it influences ecosystem C sink capacity. This study aims to clarify the effects of thinning on C sinks of larch plantations, the most widespread forests in Northeastern China. Both C influx from biomass production and C efflux from each soil respiration component and its temperature sensitivity we...

متن کامل

Radial Growth Response of Larix gmelinii to Climate along a Latitudinal Gradient in the Greater Khingan Mountains, Northeastern China

To explore how climatic factors influence tree growth within the context of global climate changes, we used a dendroclimatological analysis to understand the response of Larix gmelinii to climatic variations along a broad latitudinal gradient from 47.27◦ to 52.66◦ N in the Greater Khingan Mountains of Northeastern China. The growth-limiting climate factors and a detailed association between rad...

متن کامل

Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China

Soil respiration is one of the major carbon (C) fluxes between terrestrial ecosystems and the atmosphere and plays an important role in regulating the responses of ecosystem and global C cycling to natural and anthropogenic perturbations. A field experiment was conducted between April 2005 and October 2006 in a semiarid grassland in northern China to examine effects of topography, fire, nitroge...

متن کامل

Immediate responses of cyst nematode, soil-borne pathogens and soybean yield to one-season crop disturbance after continuous soybean in northeast China

Habitat disturbance affects numerous ecosystem components and processes, but its effect on continuous soybean system is less available. Soybean was seeded following six preceding crops, including grain soybean (Glycine max L. Merill.), wheat (Triticum aestivum L.), sugar beet (Beta vulgaris L.), tobacco (Nicotiana tabacum L.), corn (Zea mays L.) and hemp (Cannabis Satia L.), on a Mollisol ...

متن کامل

Development of customized fire behavior fuel models for boreal forests of northeastern China.

Knowledge of forest fuels and their potential fire behavior across a landscape is essential in fire management. Four customized fire behavior fuel models that differed significantly in fuels characteristics and environmental conditions were identified using hierarchical cluster analysis based on fuels data collected across a boreal forest landscape in northeastern China. Fuel model I represente...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017